A Rapid and Efficient Approach to Chiral, Nonracemic Aza Sugars from Nonsugars. A Formal Synthesis of 1,4-Dideoxy-1,4-imino-D-lyxitol

A. I. Meyers*, C. J. Andres, James E. Resek, Maureen A. McLaughlin, Charlotte C. Woodall, and P. H. Lee

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received January 23, 1996

Azasugars **1** and **2** are particularly attractive synthetic targets because of their important biological properties which include glycosidase inhibition, 1 tumor growth inhibition,² and anti-HIV³ behavior. The recent intense activity targeting the synthesis of azasugars has produced a large number of elegant and efficient routes based on carbohydrate⁴ and noncarbohydrate⁵ starting materials. Most of these routes, however, suffer from excessive length or from lack of selectivity.^{4h,5e}

As a continuation of our studies describing stereoselective additions of heteroatoms to unsaturated chiral $lactams⁶$ we explored the diastereoselective dihydroxylation of **8** as a potential route to these important aza sugars, e.g., **3**. The implementation of this sequence

(4) (a) Fleet, G. W. J.; Nicholas, S. J.; Smith, P. N.; Evans, S. V.; Fellows, L. E.; Nash, R. J. Tetrahedron Lett. **1985**, 26, 3127. (b) Fleet, G. W. J.; Son, J.C.; G. Reet, D. St. C.; d. Bello, I. C.; Winchester, B. Tetr **1988**, *44*, 2637. (d) Setoi, H.; Kayakiri, H.; Takeno, H.; Hashimoto, M. *Chem. Pharm. Bull.* **1987**, *35*, 3995. (e) Buchanan, J. G.; Edgar, A. R.; Hewitt, B. D. *J. Chem. Soc. Perkin Trans. 1* **1987**, 2371. (f) Wehner,
V.; Jäger, B. *Angew Chem., Int. Ed. Engl.* **1990**, *29*, 1169. (g) Moss, W. O.; Bradbury, R. H.; Hales, N. J.; Gallagher, T. *J. Chem. Soc., Perkin Trans. 1* **1992**, 1901. (h) Baxter, E. W.; Reitz, A. B. *J. Org. Chem.* **1994,** 59, 3175 and references cited therein. (i) Wong, C.-H.; Provencher, L.; Proco, J.; Jung, S.-H.; Wang, Y.-F.; Chen, L.; Wang, R.; Steensma, D. H. *J. Org. Chem.* **1995**, *60*, 1492. (j) Ryu, Y.; Kim, G. *J. Org. Chem.* **1995**, *60*, 103.

(5) (a) Kahl, J.-U.; Wieland, T. *Liebigs Ann. Chem.* **1981**, 1445. (b) DeShong, P.; Sidler, D. R.; Kell, D. A.; Aronson, N. N. *Tetrahedron*
Lett. **1985**, *26,* 3747. (c) Ziegler, T.; Straub, A.; Effenberger, F. *Angew*
Chem., Int. Ed. Engl. **1988**, *27*, 716. (d) Takahata, H.; Banba, Y.; Tajima, M.; Momose, T. *J Org. Chem.* **1991**, *56*, 240. (e) Takano, S.; Moriya, M.; Ogasawara, K. *Tetrahedron Asymmetry* **1992**, *3*, 681. (f) Hudliky, T.; Rouden, J.; Luna, H. *J. Org. Chem.* **1993**, *58*, 985. (g) Wang, Y.-F.; Dumas, D. P.; Wong, C-H *Tetrahedron Lett.* **1993**, *34*, 403. (h) Look, G. C.; Fotsch, C. H.; Wong, C.-H. *Acct. Chem. Res.* **1993,**
26, 182. (i) Blanco, M. J.; Sardina, F. J. Tetrahedron Lett. 1994, <i>35,
8493. (j) Griffart-Brunet, D.; Langlois, N. *Tetrahedron Lett.* **1994** 119, 2889. (k) Hassner, A.; Falk, E.; Nudelman, A.; Albeck, A.; Gottlieb, H. E. *Tetrahedron Lett*. **1994**, *35*, 2397. (l) Dondoni, A.; Pierrone, D. *J. Org. Chem.* **1995**, *60*, 4749. (m) Huwe, C. M.; Blechert, S. *Tetrahedron Lett.* **1995**, 1621. (n) Zhi-cai, S.; Chun-min, Z.; Guo-qiang, L. *Heterocycles* **1995**, *41*, 277. (o) Altenbach, H.-J.; Wischnat, R. *Tetrahedron Lett.* **1995**, *36*, 4983. (p) Park, K. H. *Heterocycles* **1995**, *41*, 1715. (q) Johnson, C. R.; Nerukar, B M.; Golebiowski, A.; Sundram H.; Esker, J. L. *J. Chem. Soc., Chem. Commun.* **1995**, 1139.

required construction of the angularly substituted (benzyloxy)methylene lactam **7** followed by subsequent stereoselective steps leading to the appropriate diol **9**. The latter would then serve as the pivotal precursor, after removal of the chiral phenylglycinol moiety, to (2*R*,3*S*,4*R*)- 1,4-dideoxy-1,4-imino-D-lyxitol, **3**, a known1j,3,7 competitive inhibitor of α -galactosidase (green coffee beans).^{1a} The synthetic route, depicted in Scheme 1, began with the alkylation of dihydrofuran **4** by treatment with *t*-BuLi in THF (0 °C) followed by benzyloxymethyl chloride (BOM-Cl, Fluka, 60% purity) to give crude furan derivative **5**. The crude substituted dihydrofuran **5** was then simultaneously hydrolyzed and oxidized^{6d} by treatment with Jones reagent to furnish the keto acid **6**. Cyclodehydration of the latter with (*S*)-phenylglycinol8 gave the chiral lactam **7** in 38% overall yield from dihydrofuran **4** without purification or isolation of any of the intermediates (**5** and **6**). Introduction of the unsaturation to produce **8** was accomplished in 85% yield by treatment with methyl phenylsulfinate and potassium hydride in THF, followed by thermal elimination of the intermediate sulfoxides in refluxing toluene.⁹

The key step to introduce the vicinal hydroxyl groups was accomplished with a catalytic quantity of osmium tetraoxide and stoichiometric *N*-methylmorpholine-*N* oxide (NMO) in aqueous acetone. An 80% yield of a 87: 13 mixture of *endo*-*exo* diols **9** was obtained which was readily purified by chromatography and crystallization to provide the major component **9b** in 64% yield. The relative stereochemistry in **9b** was confirmed by X-ray crystallography which indicates preferential entry of the OsO4 from the *endo* face. In preparation for the reductive cleavage of the C-O bond, the acetonide **10** was formed in 98% yield using dimethoxypropane and catalytic $p\text{-}$ toluensulfonic acid in CH $_2$ Cl $_2$. 10

Reductive cleavage of the oxazolidine C-O bond in **10** was the final crucial step in the synthesis. This step had to proceed with high stereoselectivity to prevent the formation of **11** as an epimeric mixture at C-2 of the pyrrolidine ring. We have previously described related reductions of the fused aziridine^{6c} lactam 13 and the fused cyclobutane6d lactam **14** which proceeded with a high degree of inversion of configuration at C-5 (Scheme 2). These results were interesting based on our previous observation of clean retention of configuration in reductions of simple unsubstituted bicyclic lactams.¹¹ By forming the acetonide in **10**, we had, in effect, added

⁽¹⁾ Sinnott, L. M. *Chem. Rev.* **1990**, *90*, 1171.

^{(2) (}a) Bernacki, R. J.; Korytnyk, W. *Cancer Metastasis Rev.* **1985**, *4*, 81. (b) Tsukamoto, K.; Uno, A.; Shimada, S.; Imokaw, G. *Clin. Res.* **1989**, *37A*, 722.

^{(3) (}a) Fleet, G. W. J., et al. *FEBS Lett* **1988**, 237. (b) Gruters, R. A.; Neefies, J. J.; Tersmette, M; DeGroede, R. E.; Tulp, A.; Huisman, H. G.; Miedema, F.; Ploegh, H. L. *Nature* **1987**, *330*, 74.

^{(6) (}a) Andres, C. J.; Spetseris, N.; Norton, J. R.; Meyers, A. I. *Tetrahedron Lett.* **1995**, *36*, 1613. (b) Andres, C. J.; Lee, P. H.; Nguyen, T. H.; Meyers, A. I. *J. Org. Chem.* **1995**, *60*, 3189. (c) Andres, C. J.; Meyers A. I. *Tetrahedron Lett*. **1995**, *36*, 3491. (d) For other diastero-facial additions in this series see: Meyers, A. I.; Tschantz, M. A.; Brengel, G. P. *J. Org. Chem.* **1995**, *60*, 4359. (e) Brengel, G. P., Rithner, C.; Meyers, A. I. *J. Org. Chem.* **1994**, *59,* 5144. (7) Boshyal, B. P.; Fleet, G. W. J.; Gough, M. J.; Smith, P. W.

Tetrahedron **1987**, *43*, 3083.

⁽⁸⁾ For synthetic procedures using phenylglycinol and 2-alkyldihydrofurans to generate various angularly substituted chiral bicyclic lactams, see: Tschantz, M. A.; Burgess, L. E.; Meyers, A. I. *Organic Syntheses*; Wiley: New York, 1994; Vol. 73, p 221. (9) Resek, J. E.; Meyers, A. I. *Tetrahedron Lett.* **1995**, *36*, 7051.

⁽¹⁰⁾ Evans, D. A.; Sheppard, G. S. *J. Org. Chem.* **1990**, *55*, 5192. (11) Meyers, A. I.; Burgess, L. E. *J. Org. Chem.* **1991**, *56*, 2294.

Scheme 2

another "steric control element"12 which was anticipated to also direct the reduction, *via* inversion of the benzyloxymethyl substituent, to the *all*-*cis* pyrrolidine, **11**. However, when the acetonide **10** was treated with alane under standard conditions,11 the pyrrolidine **11** was formed in 85% yield but as a 2:1 mixture epimeric at C-2. A variety of conditions (solvents, temperature, different diol and angular protecting groups) failed to improve this disappointing ratio. Additional effort was directed at reducing the unmasked diol, **9b**, in the hope that the dialkoxyaluminum salt would itself serve as a bulky unit to enhance facial selectivity. However, the reaction proceeded poorly due to solubility problems associated with the alkoxide salts. Use of titanium-assisted silane reductions (Scheme 2) resulted in a variety of undesired side reactions including reduction of the acetonide ketal center. The problem of selectivity was finally overcome by reduction of the acetonide **10** with 9-BBN (THF, reflux, 10 equiv) which produced a single diastereomer of **11** in 81% yield. Subsequent hydrogenolysis of **11** with Pd(OH)2 in the presence of di-*tert*-butyl dicarbonate (Boc2O) gave, after chromatography, the *N*-Boc-lyxitol **12** in 75% yield, whose physical constants were identical to those previously reported.7 The fact that (2*R*,3*S*,4*R*)-**12** was obtained confirmed that the 9-BBN reduction of the tricyclic intermediate **10** also proceeded with inversion at the angular benzyloxy group. Furthermore, the 9-BBN also conveniently reduced the lactam carbonyl, while the hydrogenation step $(11 \rightarrow 12)$ proceeded with simultaneous removal of the *N* and *O*-benzyl groups.

In summary, the asymmetric synthesis of **12**, wellknown to be carried forward to **3**, ⁷ was accomplished in eight steps (12.3% from dihydrofuran) and in high enantiomeric purity from nonsugar precursors. Subsequent reports will describe synthetic routes to other members of these biologically important systems.

Acknowledgment. The authors are grateful to Professor G. W. J. Fleet for comparison spectra and helpful discussions. Financial support from the National Institutes of Health is gratefully acknowledged.

Supporting Information Available: Experimental details and NMR spectra for **7**-**12** (11 pages).

JO960129K

⁽¹²⁾ The deliberate use of an appended ring to serve as a steric control factor has been known for almost 40 years; Woodward, R. B.; Bader, E. F.; Bickel, H.; Frey, A. J.; Kierstead, R. W. *Tetrahedron* **1958**, *2*, 1.